Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Omar Khan and Paul Huang

Omar Khan and Paul Huang

Trident Associates, USA

Title: VR Based Landing Aid

Biography

Biography: Omar Khan and Paul Huang

Abstract

The use of computer generated high quality real-time video provides engineers/scientists/electronic game designers a powerful tool in so many applications that even the sky is no longer the limit. The advent of micro and nanoelectronics further enables complicated devices to be put into smaller, inexpensive, and robust packages. During the last few years, smaller video-image-based devices have been installed in land-based vehicles to enhance driving comfort, convenience, and safety. These include navigational aids, GPS, collision avoidance devices, surround-view systems and many others. The proliferation of these devices is mainly due to the relatively inexpensive and short life span of land vehicles compared to that of airplanes (and submarines). The authors in the past have developed a concept to aid helicopter pilots to land their craft when it is not possible to use the out-of-the-window view for a safe landing. This paper works further on the development of an aid for landing on a moving platform such as a shipboard heliport. For landing on a shipboard platform, in addition to the obstacles of water spray and mist (due to sea state conditions), frequent fog, and other weather related elements, a moving platform with six degrees of motion (three linear and three angular) creates even more challenges for the pilot. This paper provides a potential solution to the problems listed above. According to the analysis and preliminary computer simulation, the proposed landing aid may even have the potential to become an autonomous landing system and could be used in unmanned aerial vehicles as well.

Key words: real-time, computer generated video image, operator aid, and autonomous systems.

Speaker Presentations

Speaker PDFs